STAT 3631/5631 Homework

Applied Statistics and Probability for Engineers
Montgomery and Runger

Assignment 8

Chapter 4: 4, 6, 9, 12, 16, 20, 26, 28.
$4-4 \quad$ a) $P(1<X)=\int_{4}^{\infty} e^{-(x-4)} d x=-\left.e^{-(x-4)}\right|_{4} ^{\infty}=1$, because $f_{X}(x)=0$ for $\mathrm{x}<4$. This can also be obtained from the fact that $f_{X}(x)$ is a probability density function for $4<\mathrm{x}$.
b) $P(2 \leq X \leq 5)=\int_{4}^{5} e^{-(x-4)} d x=-\left.e^{-(x-4)}\right|_{4} ^{5}=1-e^{-1}=0.6321$
c) $P(5<X)=1-P(X \leq 5)$. From part b., $P(X \leq 5)=0.6321$. Therefore, $P(5<X)=0.3679$.
d) $P(8<X<12)=\int_{8}^{12} e^{-(x-4)} d x=-\left.e^{-(x-4)}\right|_{8} ^{12}=e^{-4}-e^{-8}=0.0180$
e) $P(X<x)=\int_{4}^{x} e^{-(x-4)} d x=-\left.e^{-(x-4)}\right|_{4} ^{x}=1-e^{-(x-4)}=0.90$.

Then, $x=4-\ln (0.10)=6.303$

4-6.

$$
\begin{aligned}
& \text { a) } P(X>3000)=\int_{3000}^{\infty} \frac{e^{\frac{-x}{1000}}}{1000} d x=-\left.e^{\frac{-x}{1000}}\right|_{3000} ^{\infty}=e^{-3}=0.05 \\
& \text { b) } P(1000<X<2000)=\int_{1000}^{2000} \frac{e^{\frac{-x}{1000}}}{1000} d x=-\left.e^{\frac{-x}{1000}}\right|_{1000} ^{2000}=e^{-1}-e^{-2}=0.233 \\
& \text { c) } P(X<1000)=\int_{0}^{1000} \frac{e^{\frac{-x}{1000}}}{1000} d x=-\left.e^{\frac{-x}{1000}}\right|_{0} ^{1000}=1-e^{-1}=0.6321 \\
& \text { d) } P(X<x)=\int_{0}^{x} \frac{e^{\frac{-x}{1000}}}{1000} d x=-\left.e^{\frac{-x}{1000}}\right|_{0} ^{x}=1-e^{-x / 1000}=0.10 .
\end{aligned}
$$

Then, $\mathrm{e}^{-\mathrm{x} / 1000}=0.9$, and $\mathrm{x}=-1000 \ln 0.9=105.36$.
$4-9$ a) $\mathrm{P}(\mathrm{X}<2.25$ or $\mathrm{X}>2.75)=\mathrm{P}(\mathrm{X}<2.25)+\mathrm{P}(\mathrm{X}>2.75)$ because the two events are mutually exclusive. Then, $\mathrm{P}(\mathrm{X}<2.25)=0$ and

$$
\mathrm{P}(\mathrm{X}>2.75)=\int_{2.75}^{2.8} 2 d x=2(0.05)=0.10
$$

b) If the probability density function is centered at 2.55 meters, then $f_{X}(x)=2$ for $2.3<\mathrm{x}<2.8$ and all rods will meet specifications.

4-12. a) $P(X<1.8)=P(X \leq 1.8)=F_{X}(1.8)$ because X is a continuous random variable. Then,

$$
F_{X}(1.8)=0.25(1.8)+0.5=0.95
$$

b) $P(X>-1.5)=1-P(X \leq-1.5)=1-.125=0.875$
c) $\mathrm{P}(\mathrm{X}<-2)=0$
d) $P(-1<X<1)=P(-1<X \leq 1)=F_{X}(1)-F_{X}(-1)=.75-.25=0.50$

4-16. Now, $f(x)=x / 8$ for $3<\mathrm{x}<5$ and $F_{X}(x)=\int_{3}^{x} \frac{x}{8} d x=\left.\frac{x^{2}}{16}\right|_{3} ^{x}=\frac{x^{2}-9}{16}$

$$
\text { for } 0<\mathrm{x} \text {. Then, } F_{X}(x)=\left\{\begin{array}{c}
0, x<3 \\
\frac{x^{2}-9}{16}, 3 \leq x<5 \\
1, x \geq 5
\end{array}\right.
$$

4-20. $f(x)=2 e^{-2 x}, x>0$

4-26. $\quad E(X)=\int_{3}^{5} x \frac{x}{8} d x=\left.\frac{x^{3}}{24}\right|_{3} ^{5}=\frac{5^{3}-3^{3}}{24}=4.083$

$$
V(X)=\int_{3}^{5}(x-4.083)^{2} \frac{x}{8} d x=\int_{3}^{5}\left(\frac{x^{3}}{8}-\frac{8.166 x^{2}}{8}+\frac{16.6709 x}{8}\right) d x
$$

$$
=\left.\frac{1}{8}\left(\frac{x^{4}}{4}-\frac{8.166 x^{3}}{3}+\frac{16.6709 x^{2}}{2}\right)\right|_{3} ^{5}=0.3264
$$

4-28. a)

$$
\begin{aligned}
& E(X)=\int_{1200}^{1210} x 0.1 d x=\left.0.05 x^{2}\right|_{1200} ^{1210}=1205 \\
& V(X)=\int_{1200}^{1210}(x-1205)^{2} 0.1 d x=\left.0.1 \frac{(x-1205)^{3}}{3}\right|_{1200} ^{1210}=8.333
\end{aligned}
$$

Therefore, $\quad \sigma_{x}=\sqrt{V(X)}=2.887$
b) Clearly, centering the process at the center of the specifications results in the greatest proportion of cables within specifications.

$$
P(1195<X<1205)=P(1200<X<1205)=\int_{1200}^{1205} 0.1 d x=\left.0.1 x\right|_{1200} ^{1205}=0.5
$$

