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ABSTRACT 

Fulton, M.R., 1991. A computationally efficient forest succession model: design and initial tests. For. 
Ecol. Manage., 42: 23-34. 

A computationally efficient forest-stand simulation model, using a concise set of state variables, is 
described. The model (called FLAM: Forest LAyer Model) simulates the interaction of height-class- 
structured tree populations on a small patch, in contrast to gap models of the JABOWA/FORET type, 
which model individuals. FLAM has been derived from a generalized gap model, FORSKA, by two 
approximations: ( 1 ) all trees of a species in a given height class have the same stem volume, leaf area, 
and growth increment; and (2) the distribution of tree heights within a class is uniform. Promotion 
from one height class to another is simulated as a binomially distributed random variable; the prob- 
ability of promotion is the ratio of the predicted height growth to the depth of the height class. Height- 
class distributions and leaf-area-density profiles generated by FLAM were 80% and 93% similar (re- 
spectively) to profiles generated by FORSKA, but FLAM ran in 5% of the c.p.u, time. The effect of 
variations in spatial resolution (number of height classes) and temporal resolution (number of years 
per time step) were tested by comparing leaf-area-density profiles from FORSKA and FLAM. The 
performance of FLAM was insensitive to temporal and spatial resolution over a wide range of reso- 
lutions ( 1-5-year time-step, 4-20 height classes ). Performance deteriorated if the temporal or spatial 
resolution was coarser. 

I N T R O D U C T I O N  

The initial stage in modeling a system is to select the relevant components 
and the variables to be used to describe their state. For example, population 
ecology concerns itself with numbers of individuals. The classical equations 
of population growth use only the total number of individuals as a description 
of the state of  the population. The fact that this state description is inadequate 
in many situations, e.g. where age or size structure matters, is well known, 
and has led to frequent criticisms of  theory developed from these equations. 
Recently, Huston et al. (1988 ) have advocated the use of  models in which 
each individual is modeled as a separate entity. This computationally de- 
manding solution may not be necessary in all cases. If relevant differences 
between individuals can be identified, it may be sufficient to model classes of 
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individuals whose behavior is expected to be similar. For example, Werner 
and Caswell ( 1977 ) compared age-class and stage-class descriptions of teasel 
populations, and found the predictions of the latter to be consistently superior. 

'Gap models' based on JABOWA (Botkin et al., 1972 ) and its descendant 
FORET (Shugart and West, 1977) are well-known examples of individual- 
based ecological models, and have effectively mimicked structural and com- 
positional features of forests under a wide variety of conditions. The two key 
features of these models are as follows: 

( 1 ) The scale of interaction of individuals is identified. Many simple models 
of population interactions have assumed that conditions can be averaged over 
large areas. Gap models assume horizontally uniform conditions over a small 
(0.01-0.1-ha) patch. 

(2) Specific mechanisms of interaction between individuals are modeled - 
a reduction of growth due to the depletion of a soil resource, and a vertically 

structured competition for light. The choice of a specific patch size corre- 
sponds to an assumption that competition occurs over such areas. 

Light competition is asymmetric. This asymmetry is brought about by dif- 
ferences in canopy height, which implies that it may be possible to use the 
equations of individual growth and interaction to model the growth and in- 
teraction of size-structured populations of trees on a patch. The term 'popu- 
lation', in this case, means the set of trees of a given species occupying a mod- 
eled patch, not the (usually larger) populations considered by geneticists. The 
model described in this paper (called FLAM, for Forest LAyer Model) sim- 
ulates tree populations of each species in a small number of height classes. 
The vertical spatial resolution (number of height classes) can be varied. The 
effects of variation in this parameter, and in the model time-step, were 
explored. 

MODEL STRUCTURE 

FLAM was designed to parallel an existing model as closely as possible. The 
purpose was to isolate the effects of the differences in state description from 
other possible differences between gap models, and examine their effect on 
the predictions of the model. The central problem in this development was 
the application of individual-tree growth equations to a model of interacting 
structured populations. A few simple assumptions allowed this to be carried 
out with a minimum of violence to the basic assumptions underlying gap 
models. This discussion will begin with a short description of the model used 
as a basis for FLAM, followed by a description of mechanisms peculiar to 
FLAM. 
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Brief description of FORSKA 

The model used as a basis for FLAM is FORSKA, developed for Scandi- 
navian forests by Leemans and Prentice ( 1989 ) and tested by predictions of 
the structure and composition of a spruce/pine forest in central Sweden 
(Prentice and Leemans, 1990). This model differs from standard gap models 
based on JABOWA (Botkin et al., 1972) and FORET (Shugart and West, 
1977 ) in several ways, which will be outlined below. A description of an ear- 
lier version of FORSKA, including some of the features described below, can 
be found in Leemans and Prentice ( 1987 ). 

The most basic differences between FORSKA and conventional gap models 
are in the state variables and model structure. In conventional gap models, 
species and Dbh (diameter at breast height) alone suffice to indicate the state 
of a tree. FORSKA models the Dbh, leaf area, and bole height (height of leaf- 
less stem) separately for each tree in the patch. 

Establishment is similar to other gap models, in that a small number of 
saplings are 'planted' in a year if conditions allow, but the only condition used 
is light intensity. If light on the forest floor exceeds the compensation point 
of the species then establishment can occur. The initial size of saplings (Dbh) 
varies over a small range so that the size and growth of all trees established in 
a given year is not identical. Initial leaf area is a linear function of the square 
of Dbh, in accordance with the pipe-model theory of plant form (Shinozaki et 
al., 1964 ), and the fact that saplings have little or no heartwood. 

As in other gap models, height and diameter are functionally related, but 
FORSKA uses an asymptotic relationship that does not require the specifi- 
cation of a maximum diameter: 

H =  1.3+ (nmax - -  1.3 ) ( 1 . 0 - e x p ( - A D )  ) ( 1 ) 

where: His  height (m) and D=Dbh. Hmax (maximum height (m) )  andA are 
species-specific constants which can be estimated from height and Dbh data 
by non-linear regression (Leemans and Prentice, 1989 ). 

Growth depends on net assimilation integrated with respect to height. Sev- 
eral factors enter into the equation for growth: the vertical distribution of leaf 
area; light extinction; the curve for the response of net assimilation to light; 
below-ground competition; and a cost for the maintenance of leaf area at a 
given height. The vertical distribution of leaf area is calculated by assuming 
that each tree has its leaf area distributed uniformly from the top of the tree 
to the bole height, instead of being all at the top of the tree, as is assumed in 
conventional gap models. Light extinction is calculated according to the Beer- 
Lambert Law (Monsi and Saeki, 1953 ): 

l- =loexp( - kF__) (2) 

where: l~ is available light; lo, light at the top of the canopy; k, light-extinction 
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coefficient; and F~ is cumulative leaf area at depth z in canopy. Assimulation 
is based on a maximum net assimilation rate per leaf area, multiplied by a 
rectangular hyperbolic function of available light: 

P~= (k l , -c ) / (kL+a-c)  (3) 

where: P~ is proportion of maximum photosynthesis carried out by leaves at 
depth z in the canopy; a,  half saturation point; and c, compensation point of 
photosynthesis/light response curve. The growth equation is: 

H 

( d ( O a H ) ) / d t =  (( Wrnax - -  Wtot)/Wmax)l SL(~'Pz-dz)dz (4) 
B 

where: Wtot is total biomass on patch (proportional to stem volume: DZH); 
Wmax, the maximum biomass; S, vertical leaf-area density; ~,, species-specific 
growth-scaling constant; d, species-specific maintenance cost; and B, bole 
height. W,o, and W m a  x model below-ground competition in a crude manner 
similar to many conventional gap models. The rationale for the cost factor 
scaled to height comes from the 'pipe model' theory of plant form (Shinozaki 
et al., 1964), and reflects the maintenance cost of the sapwood required to 
support a given leaf area at a given height. The integral is solved by evaluating 
the function over small discrete intervals and taking the sum. The stem-vol- 
ume growth increment is converted to a Dbh increment by use ofEqn. ( 1 ) and 
its first derivative. 

Leaf area is not just a function of Dbh. New leaf area is added proportional 
to the basal area increment, then two mechanisms independently reduce leaf 
area: ( 1 ) a certain minimum percentage of leaf area is considered to be lost 
each year to 'sapwood turnover'; and (2) leaf area that is shaded below the 
compensation point for that species is 'pruned', and the bole height is raised 
accordingly. 

The probability of mortality of trees in a time-step is calculated as a func- 
tion of the ratio of growth efficiency (volume-increment/leaf-area; Waring, 
1983 ) to the maximum growth efficiency for the species. When the ratio is 
less than a specified threshold the probability of mortality is greatly enhanced. 

Structure of FLAM 

FLAM simulates the number of stems, stem volume (more precisely, the 
product of diameter squared and height ), leaf area and top bole layer (highest 
layer without leaves) for each tree species in a small number of height classes. 
The leaf area of the trees in a height class is assumed to be evenly distributed 
from the top of the height class to the top of the top bole layer. In this discus- 
sion, the term 'layer' refers to a volume of space in the simulated patch cor- 
responding to the height class of the trees whose tops are found in that layer. 
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The state for each height class and species is updated using the following 
equations: 

N( t + 1 )i j=N( t )ij--MNij--PNouaj + PNinij (5) 

V( t + 1 ) ij = V( t ) ij + Dvij - Mv,j - Pvout,j + Pvmij (6) 

L(  t+ 1 ) o = L (  t)o + DLij--MLo--PLou,O + PL~mj--Lprune (7) 

where: N(t)  o, V(t) 0, and L ( t ) ij are number of stems, total stem volume and 
leaf area, respectively, for the species i and height class j at time t; Dr, DL, 
growth increments of stem volume and leaf area, respectively; MN, My and 
Mr., mortality of individuals, stem volume and leaf area respectively; PNout, 
Pvou, and PLo~,, promotion of individuals, stem volume and leaf area, respec- 
tively, into the height class (es) above; PN, n, Pv~, and PLY,, promotion of indi- 
viduals, stem volume and leaf area, respectively, from below; and Lpru,e, leaf 
area pruned. The calculation of each of these terms is described below under 
the headings of establishment, growth, promotion, pruning and mortality. 

Establishment (promotion into layer 1) 
Promotion into the lowest height class is similar to 'establishment' in FOR- 

SKA, with small modifications. As in FORSKA, if the light below the bottom 
layer is above the compensation point for the species, a number (Poisson 
variate) of 'saplings' is introduced. These have a stem volume based on the 
product of height (1.3 m) and diameter at the base of the trunk (calculated 
from a linear extrapolation of the height/Dbh relationship to a height of 0.0 
m): 

v = l . 3 ( 1 . 3 / s )  2 (8) 

where: s is the initial slope of height Obh function: A • (Hmax - 1.3 ) (Eqn. 1 ) ), 
to which is added 50% of the expected growth increment of a tree of this size 
during the time-step. Because the growth of trees in FLAM has a stochastic 
element (movement between height classes), it is not necessary to introduce 
random size variations at this step. 

Growth (Dr and Dz) 
Growth in stem volume is calculated using the same equations as FORSKA 

for a basis, but the evaluation of the integral is made more efficient by the 
assumption of homogeneously distributed leaf area of each species within each 
layer. Equation ( 3 ) becomes: 

L t ( L )  

d ( D Z H ) / d t ) = ( ( W m a × - W t o t ) / W m a x )  ~ SL(TP~-gz )dz  (9) 
L = L b + I  

L t ( L - -  I ) 

where: Lb is top bole layer; Lh, height class of trees; and Lt(L) ,  height of top 
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of layer L. Because F~ is a linear function of canopy depth within a layer, the 
integral in this equation has an analytical solution. The equation returns the 
total volume increment for all the trees of a species in a height class. 

The growth equation returns a volume increment, but growth in leaf area 
requires a notional basal area (or diameter squared) increment, and promo- 
tion into higher height classes requires a notional height increment. The eval- 
uation of these increments is the first problem encountered in translating in- 
dividual growth equations into structured population terms. The problem is 
solved by assuming that trees in a given height class allocate volume growth 
to diameter and height growth as a 'representative tree' would. A representa- 
tive tree is one with height halfway between the upper and lower limits of the 
height class. Given the representative height, the relationship between height 
and diameter for trees of that species (Eqn. 1 ), and the model's definition of 
stem volume, the relationship between the time differentials of stem volume, 
diameter and height can be derived and calculated. These are calculated as 
constants specific to each combination of species/layer. The relationship be- 
tween the total volume (D2H) increment and total diameter squared incre- 
ment for all the trees of a species in a layer is: 

d(D2)/dt= (2/(DrCHD +2Hr)  ) (dV/dt)  (lO) 

where: Hr and Dr are height and Dbh of the 'representative tree' for the layer; 
and CHD = dH/dD evaluated at D = Dr (see Eqn. l ). The relationship between 
the volume increment and height increment for a representative tree is: 

dH/dt=(1/N(t))((1/D2)(I--(2HJ(DrCHD+2Hr)))(dV/dt) ( l l )  

This representative height increment can be used to calculate the probability 
of promotion to the next height class (see below). 

Promotion (Puou,, Pvou,, and Pcou) 
The promotion of trees from one height class to the class (es) above is the 

other salient problem that must be solved in the application of individual 
growth equations to a stage-structured population model. As noted in the dis- 
cussion of growth, the idea of a representative tree allows the calculation of 
diameter and height growth, given a volume growth increment. The problem 
is how to translate this continuous height growth into the discontinuous pro- 
motion required by the model. Two assumptions are made: ( 1 ) the distribu- 
tion of tree heights within the height class is uniform; and (2) all trees in the 
height class (of a given species) have the same increment of height growth. 
The number of trees promoted out of the layer can then be simulated as a 
binomially distributed random variable, with: 
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Number  of trials = N ( t ) ,j - MN, j  ( 12 ) 

Probability of promotion = m in imum (DH/THICKNESS, 1.0 ) ( 13 ) 

where: D~ is height growth increment; and THICKNESS, difference between the 
upper and lower limits of  the height class. Stem volume and leaf area are 
assumed equal for all trees of  a species within a height class, so these variables 
are updated accordingly. Promotion out of one height class becomes promo- 
tion into the height (class (es) above, so the model state is updated beginning 
with the lowest height class. I fDn is greater than the thickness of one or more 
of the layers above, the program can allow trees to 'skip' one or more layers, 
allocating trees to each layer with a binomial variate calculated in a fashion 
analogous to the above. 

Pruning (Loru,e and top bole layer) 
Pruning of  leaf area works on the same principle as FORSKA, but it is ap- 

plied on a layer-by-layer basis instead of  continuously. If the light falling on 
the top of a layer falls below the compensation point for a species, the leaf 
area within that layer is pruned and the top bole layer is raised to that layer. 
However, trees may not prune away all of their leaf area; the top bole layer is 
always below the height class of the trees. The top bole layer is initialized to 
layer zero (below the first layer), and is reset to zero whenever there are no 
trees in that height class. 

Mortality (MN, Mv and ML) 
,The probability of  mortality in a time-step is a step function of the relative 

growth efficiency. Probability of mortality is the same for all trees of a species 
in a height class, so the number  killed is simulated as a binomially distributed 
random variable. It is assumed that all trees in a height class have the same 
stem volume and leaf area, so these variables are updated accordingly. 

MODEL PERFORMANCE 

The purposes of  this modeling exercise were: ( 1 ) to show how a gap model 
can be converted from an individual-based model to a model  of interacting 
size-structured populations; and (2) to investigate the differences in model 
predictions caused by this conversion. The performance of FLAM, therefore, 
was evaluated by comparison with output  from its parent model, FORSKA. 
Strictly speaking, the results presented here are model verifications rather than 
validations (sensu Shugart, 1984) by comparison with actual forest data. 
FORSKA has, however, predicted detailed structural features of a forest in 
central Sweden with high accuracy (Prentice and Leemans, 1990). 

The two models were compared using height-class distributions (in 5-m 
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Fig. 1. Comparisons of runs of FLAM and FORSKA for simulated spruce/pine forest in central 
Sweden for 50, 100, and 200 years after stand initiation. (a) Number of stems ha -~ in 5-m 
height classes. (b) Leaf-area density (m2/m 3 ) profiles. 
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classes) and leaf-area density profiles. The latter comparison was made be- 
cause the distribution of foliage in the canopy is one of the strongest predic- 
tors of primary productivity in terrestrial ecosystems (Monsi et al., 1973). 
Both FORSKA and FLAM have a detailed description of leaf area distribu- 
tion compared to standard gap models, and both can be used to predict leaf 
area density profiles. 

Height-class distributions and leaf-area density profiles from model runs of 
50, 100 and 200 years are shown in Fig. 1 for FORSKA and FLAM. The pro- 
files from each model represent the average of 30 replicate patches, using pa- 
rameter values appropriate for a spruce/pine forest in central Sweden (Lee- 
mans and Prentice, 1989 ). FLAM was run with eight layers (each 5 m thick), 
and a 2-year time-step. FORSKA was run with a 0.1-m vertical integration 
step and a 2-year time-step. 

Both set of profiles (Fig. 1 ) show typical features of Scandinavian spruce/ 
pine forest dynamics, such as the increasing dominance of shade-tolerant 
Norway spruce (Picea abies) with time and the shading-out of shade-intol- 
erant Scots pine (Pinus sylvestris) in the understory. The qualitative differ- 
ences between the two sets of profiles are small. FLAM has a tendency to 
promote trees more rapidly to higher layers and to miss the tapering of the 
leaf-area density of pine in the lower layers. The two sets of profiles were 
compared quantitatively using the Bray and Curtis ( 1957 ) index and treating 
each combination of layer/species/duration as a separate 'species'. The height- 
class distributions were 80% similar and the leaf area density profiles were 
93% similar. 

It took the program FORSKA 35 min of C.P.U. time to simulate 200 years 
of growth for 30 replicate patches on a Microvax II VMS computer. The cor- 
responding run took FLAM 90 s. 

EFFECT OF TEMPORAL AND SPATIAL RESOLUTION 

The patch size prescribed for gap models is often approximately equal to 
the canopy area of a fully grown dominant tree. Models run with this patch 
size will show typical gap-phase dynamics, in which the death of a dominant 
canopy tree will allow regeneration of shade-intolerant as well as shade-toler- 
ant species (Shugart, 1984). In Boreal forests, however, only multiple-tree 
gaps, such as those created by storms of fires, allow regeneration and growth 
of shade-intolerant species (Prentice and Leemans, 1990). These dynamics 
can be effectively modeled by simply using a patch size of ca 0. l ha, which is 
much larger than the canopy area of a single dominant spruce (Leemans and 
Prentice, 1987). This patch size was used for the runs of FLAM reported 
here, as well as the runs of FORSKA used for comparison. 

After the patch size is set, the spatial resolution of a standard gap model is 
fixed by the fact that individual trees are presented. The model FLAM allows 
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the manipulation of vertical spatial resolution or grain (sensu Allen and Starr, 
1982 ) by variation in the number of height classes simulated. It is of interest 
from both practical (computation time) and theoretical points of view to 
know what is the minimum number of height classes needed for an accurate 
simulation. The question being asked is: "How much (or how little) does one 
have to know about the height and growth of each individual to accurately 
simulate the structure and dynamics of a forest?". The effect of variations in 
the time step is a related issue; here, the concern is with how long current 
trends of growth can be extrapolated before an updated state description is 
required. 

The effects of variation in spatial and temporal resolution on the model 
FLAM were investigated as follows. Leaf-area-density profiles from 50, 100, 
and 200 simulated years for the two-species system described above were gen- 
erated by FLAM and FORSKA. The profiles were averages of 30 replicate 
patches. FORSKA was run with a 2-year time-step. FLAM was run with all 
combinations of 2, 4, 8, and 20 layers and time-steps of l, 2, 5, 10, and 25 
years. The performance of FLAM was measured by the Bray-Curtis (1957) 
similarity between its leaf-area-density profiles and those generated by FOR- 
SKA. As above, the similarity was calculated for all model durations together: 
each combination of layer, duration, and species was taken as a 'species' in 
the index, giving an overall measure of model performance. The results are 
shown in Fig. 2. FLAM is insensitive to changes of spatial and temporal re- 
solution over a fairly wide range ( f> 4 layers, ~< 10-year time-step). If the re- 
solution is too coarse, either in space or time, the performance drops off 

Fig. 2. Performance of FLAM at various spatial and temporal resolutions, as measured by Bray- 
Curtis similarity of leaf-area-density profiles to those generated from FORSKA. 
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sharply. The shape of the response surface indicates that there is no apprecia- 
ble interaction between the number of layers and the time-step. 

DISCUSSION 

The results from the test of the effect of spatial resolution underscore an 
aspect of light competition as simulated by gap models: it is a positive-feed- 
back mechanism that magnifies initial differences in height. A state descrip- 
tion too coarse to capture the differences will not model the system accu- 
rately. Standard gap models are based on an explicit theory about the 
horizontal scale of tree/tree interactions (Shugart, 1984). This test indicates 
that a certain minimum vertical resolution is needed as well. The surprise is 
in how little resolution is needed. 

There is no fundamental conceptual change implied in the transition from 
an individual-based model to a model based on interactions of size-structured 
populations. Populations consist of individuals by definition. Both FLAM 
and FORSKA model populations of interacting individuals, and the scale of 
interaction of individuals (the patch size) is the same for both models. Con- 
fusion arises only if the 'population' considered here is mistaken for the (typ- 
ically larger) populations of individuals connected by reproduction and pro- 
pagule exchange that are considered by geneticists. Gap models do not directly 
address processes occurring on the level of reproductive/genetic populations. 
This is apparent from the fact that establishment in most gap models is solely 
a function of the environment; the trees actually present on the patch do not 
affect establishment rates. 

The construction of this model is, therefore, largely a technical accomplish- 
ment; the ecological logic is the same as that of gap models. However, its 
success in mimicking FORSKA implies that much of the information con- 
tained in individual tree descriptions is redundant if the main concern is with 
a dynamically sufficient (sensu Van Hulst, 1980) representation of a forest 
patch. For this purpose, a minimal model does not seem to have trees as unique 
individuals. 
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